Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22110073-6    https://doi.org/10.11896/cldb. 22110073
  无机非金属及其复合材料 |
采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究
褚洪岩1, 汤金辉2,*, 王群1, 高李1, 赵志豪1
1 南京林业大学土木工程学院,南京 210037
2 东南大学材料科学与工程学院,南京 211189
Feasibility of Producing Ultra-high Performance Concrete with High Elastic Modulus by Nano Alumina
CHU Hongyan1, TANG Jinhui2,*, WANG Qun1, GAO Li1, ZHAO Zhihao1
1 College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 8425KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米材料具有粒径小、比表面积大、化学活性高等独特性能,能够提升水泥基材料的力学性能和在恶劣环境下的耐久性,在水泥基材料领域具有广阔的应用前景。弹性模量是超高性能混凝土(UHPC)的重要力学参数之一。虽然目前UHPC的抗压强度得到了大幅提升,但是其弹性模量并未随抗压强度同幅度增长。为了探究采用纳米氧化铝(NA)制备高弹性模量UHPC的可行性,本工作利用MAA (Modified Andreasen and Andersen)模型设计UHPC初始配合比,研究不同掺量的NA对UHPC工作性能、力学性能和耐久性能的影响。此外,本工作还探究了NA对UHPC微观孔结构和微观力学性能的影响。研究表明:(1)NA能使UHPC的28 d抗折强度、抗压强度、弹性模量分别提高8.23%~16.31%、8.04%~26.39%、9.44%~16.55%;(2)NA能使UHPC的干缩、氯离子迁移系数分别降低2.54%~13.01%、8.21%~17.28%;(3)NA能够优化UHPC的孔结构,提高其浆体弹性模量;(4)综合考虑NA对UHPC工作性能、力学性能和耐久性能的影响,NA在UHPC中的优选掺量为1.0%。本工作的研究结果对利用NA制备高弹性模量的UHPC具有指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
褚洪岩
汤金辉
王群
高李
赵志豪
关键词:  纳米氧化铝  超高性能混凝土  力学性能  弹性模量  干燥收缩  耐久性    
Abstract: Nano material has been regarded as a promising material with wide applications in cement-based materials because of its unique properties, such as small particle size, big specific surface area, and high chemical activity. Elastic modulus is one of the critical mechanics parameters of ultra-high performance concrete (UHPC). Currently, although the compressive strength of UHPC has been increased significantly, the increasing magnitude of elastic modulus of UHPC is far lower than that of compressive strength. To explore the feasibility of producing UHPC with high elastic modulus by nano alumina (NA), the initial mixture of UHPC was designed via MAA model, and the effects of different contents of NA on the fluidity, mechanical properties, and durability of UHPC were systematically studied. In addition, the influence of NA on the micro pore structure and micromechanical properties of UHPC was also investigated. It was found that, (ⅰ) the flexural strength, compressive strength, and elastic modulus of UHPC at curing age of 28 d were increased by 8.23%—16.31%, 8.04%—26.39%, 9.44%—16.55%, respectively, because of the utilization of NA; (ⅱ) the drying shrinkage and chloride-ion migration coefficient were reduced by 2.54%—13.01% and 8.21%—17.28%, respectively, due to the addition of NA; (ⅲ) the pore structure of UHPC and the elastic modulus of UHPC paste could be improved via NA; (ⅳ) the optimal content of NA was 1.0%, considering the effects of NA on the fluidity, mechanical properties, and durability of UHPC. The findings of this work are of guiding significance for the producing of UHPC with high elastic modulus.
Key words:  nano alumina    ultra-high performance concrete    mechanical property    elastic modulus    drying shrinkage    durability
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52278262);国家自然科学基金青年基金(52108197)
通讯作者:  *汤金辉,东南大学材料科学与工程学院讲师、硕士研究生导师。2018年东南大学材料科学与工程专业博士毕业。目前主要从事纳米改性超高性能混凝土制备,重点研究基于水化微结构调控的混凝土基体增韧。发表论文30余篇,包括Cement and Concrete Composites、Chemical Geology、Journal of Sustainable Cement-Based Materials、《材料导报》 《土木工程学报》等。101012824@seu.edu.cn   
作者简介:  褚洪岩,南京林业大学土木工程学院副教授、硕士研究生导师。2017年东南大学材料科学与工程专业博士毕业。目前主要从事高性能土木工程材料研发工作,重点研究新型核电牺牲材料和绿色超高性能水泥基材料的制备、表征及应用。发表论文40余篇,包括Cement and Concrete Composites、Construction and Building Materials、Journal of Sustai-nable Cement-Based Materials、《硅酸盐学报》 《材料导报》 《建筑材料学报》等;授权国家发明专利10余件,授权美国发明专利2件。
引用本文:    
褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
CHU Hongyan, TANG Jinhui, WANG Qun, GAO Li, ZHAO Zhihao. Feasibility of Producing Ultra-high Performance Concrete with High Elastic Modulus by Nano Alumina. Materials Reports, 2024, 38(5): 22110073-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb. 22110073  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22110073
1 Chu H, Gao L, Qin J, et al. Materials Reports, 2022, 36(5), 20090345(in Chinese).
褚洪岩, 高李, 秦健健, 等. 材料导报, 2022, 36(5), 20090345.
2 Rong Z, Wang Y, Jiao M, et al. Journal of the Chinese Ceramic Society, 2021, 49(11), 2322(in Chinese).
戎志丹, 王亚利, 焦茂鹏, 等. 硅酸盐学报, 2021, 49(11), 2322.
3 Shi J, Shi C, Ouyang X, et al. Materials Reports, 2021, 35(3), 03067(in Chinese).
史金华, 史才军, 欧阳雪, 等. 材料导报, 2021, 35(3), 03067.
4 Chu H, Gao L, Qin J, et al. Construction and Building Materials, 2022, 335, 127385.
5 Alsalman A, Dang C N, Prinz G S, et al. Construction and Building Materials, 2017, 153, 918.
6 Wu Z, Shi C, He W, et al. Cement and Concrete Composites, 2017, 79, 148.
7 Yang J, Chen B C, Su J Z. Journal of the Chinese Ceramic Society, 2020, 48(5), 652(in Chinese).
杨简, 陈宝春, 苏家战. 硅酸盐学报, 2020, 48(5), 652.
8 Li P P, Yu Q L, Brouwers H J H. Construction and Building Materials, 2018, 170, 649.
9 Jiang J, Zhou W, Chu H, et al. Journal of Wuhan University of Techno-logy-Mater. Sci. Ed., 2019, 34(6), 1350.
10 Ouyang X, Shi C, Wu Z, et al. Cement and Concrete Research, 2020, 138, 106241.
11 Wu Z, Shi C, Khayat K. Cement and Concrete Composites, 2016, 71, 97.
12 Wang Q N, Gu C P, Sun W. Materials Reports A: Review Papers, 2017, 31(12), 85(in Chinese).
王倩楠, 顾春平, 孙伟. 材料导报:综述篇, 2017, 31(12), 85.
13 Amanjean E N, Mouret M, Vidal T. Construction and Building Mate-rials, 2019, 224, 1007.
14 Zhang Y S, Zhang W H, Chen Z Y. Materials Reports A: Review Papers, 2017, 31(12), 1(in Chinese).
张云升, 张文华, 陈振宇. 材料导报: 综述篇, 2017, 31(12), 1.
15 Wu Z, Khayat K H, Shi C. Cement and Concrete Research, 2019, 123, 105786.
16 Chu H, Qin J, Gao L, et al. Journal of Sustainable Cement-Based Materials, 2022, 11, 2104757.
17 Zhang A, Ge Y, Yang W, et al. Construction and Building Materials, 2019, 218, 116767.
18 Peng Y, Ma K, Long G, et al. Materials, 2019, 12, 2598.
19 Joshaghani A, Balapour M, Mashhadian M, et al. Construction and Building Materials, 2020, 245, 118444.
20 Yang Z, Sui S, Wang L, et al. Construction and Building Materials, 2020, 232, 177219.
21 Feng H, Shen S, Pang Y, et al. Construction and Building Materials, 2021, 270, 121861.
22 Bahareh M, Soheil J, Kirk V, et al. Materials, 2021, 14, 6778.
23 Meddah M S, Praveenkumar T R, Vijayalakshmi M M, et al. Construction and Building Materials, 2020, 255, 119358.
24 Li Z H, Wang H F, He S, et al. Materials Letters, 2006, 60, 356.
25 Yu R, Fan D, Shui Z, et al. Journal of the Chinese Ceramic Society, 2020, 48(5), 1145(in Chinese).
余睿, 范定强, 水中和, 等. 硅酸盐学报, 2020, 48(5), 1145.
26 Wen D, Wei D, Wu L, et al. Journal of Building Materials, 2022, 25(7), 693(in Chinese).
温得成, 魏定邦, 吴来帝, 等. 建筑材料学报, 2022, 25(7), 693.
27 Yang R, Yu R, Shui Z, et al. Journal of Cleaner Production, 2020, 258, 120673.
28 Yu R, Spiesz P, Brouwers H J H. Cement and Concrete Research, 2014, 56, 29.
29 Wang X, Yu R, Shui Z, et al. Journal of Cleaner Production, 2019, 221, 805.
30 Karim R, Najimi M, Shafei B. Construction and Building Materials, 2019, 227, 117031.
31 Zhao S, Sun W. Construction and Building Materials, 2014, 63, 150.
32 Chu H, Gao L, Qin J, et al. Construction and Building Materials, 2022, 335, 127385.
33 Stefancic M, Mladenovic A, Bellotto M, et al. Construction and Building Materials, 2017, 139, 256.
34 Seifan M, Mendoza S, Berenjian A. Buildings, 2021, 11, 60.
35 Mo Z, Wang R, Gao X. Construction and Building Materials, 2020, 256, 119454.
36 Guler S, Turkmenoglu Z F, Ashour A. Construction and Building Mate-rials, 2020, 250, 118847.
37 Li W, Huang Z, Cao F, et al. Construction and Building Materials, 2015, 95, 366.
38 Yu L, Wu R. Construction and Building Materials, 2020, 259, 120657.
39 Lozano-Lunar A, da Silva P R, de Brito J, et al. Journal of Cleaner Production, 2019, 219, 818.
40 Ledesma E F, Jimenez J R, Ayuso J, et al. Journal of Cleaner Production, 2015, 87, 692.
41 Soliman N A, Tagnit-Hamou A. Construction and Building Materials, 2017, 139, 374.
42 Meng W, Khayat K H. Cement and Concrete Research, 2018, 105, 64.
43 Sorelli L, Constantinides G, Ulm F J, et al. Cement and Concrete Research, 2008, 38, 1447.
44 Hu C, Li Z. Cement and Concrete Composites, 2015, 57, 17.
[1] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[2] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[3] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[4] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[5] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[6] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[7] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[8] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[9] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[10] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[11] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[12] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[13] 李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
[14] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[15] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed